Networks and Protocols

research group

Wireless sub-group

CNRS UMR 7005

LSIIT

Les frontieres

RP group — Wireless Sensor Networks http://lsiit-cnrs.unistra.fr/rp-en/

Members

- Faculties
 - Prof. Jean-Jacques Pansiot (group leader)
 - Prof. Thomas Noel (All Wireless Internet leader)
 - Dr. Antoine Gallais (associate professor)
 - Dr. Julien Montavont (associate professor)
 - Dr. Fabrice Theoleyre (CNRS researcher)
- Engineer
 - Erkan Valentin (starting on July 5th, 2010)
- PhD students
 - Julien Beaudaux (starting on Sept. 1st, 2010)
 - Romain Kuntz (expected to end on Sept. 2010)
 - Damien Roth (started on Oct. 1st, 2009)

Key research areas

Internet of things

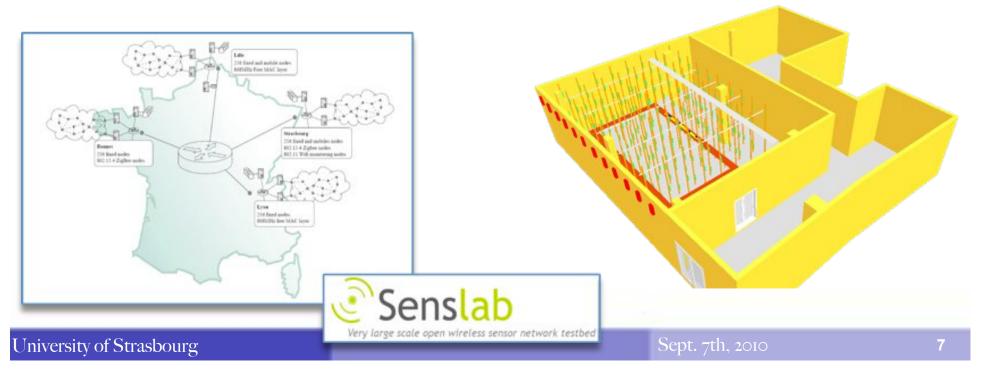
- Integrating the sensors into the Internet
- A universal access
- Efficient transmission
 - A node should sleep most of the time
 - Radio transmissions are unreliable
 - Trade-off energy consumption/bandwidth
- In-network processing
 - Push the operations in the network
 - E.g. Data aggregation
- Localization
 - Use network information to obtain a geographical location
 - Coarse localization technique (more proximity than absolute position)

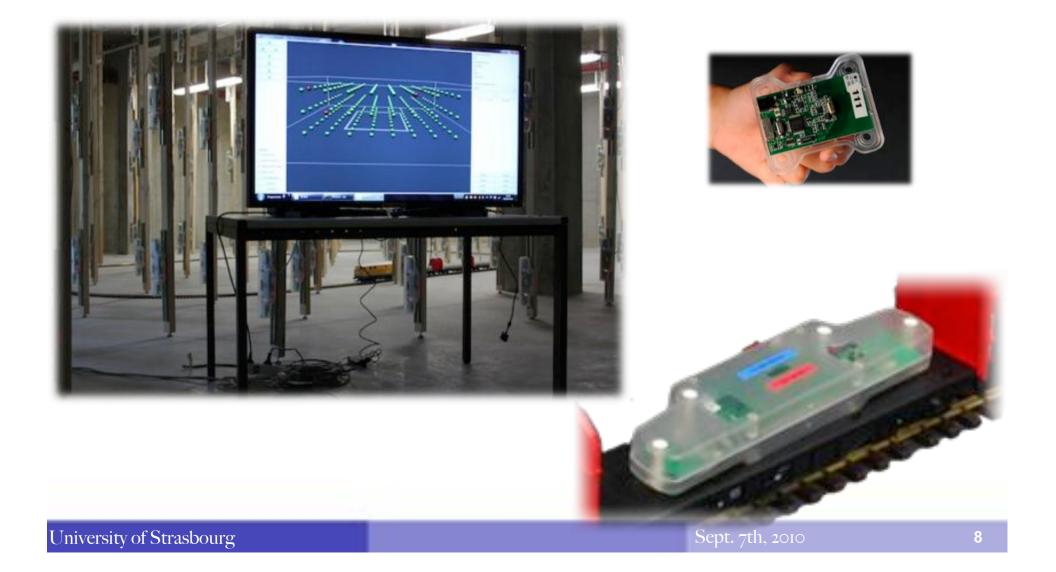
Applications

- Environmental monitoring
 - Several weather stations
 - They exchange information
 - Sensorscope project [EPFL]
 - Floodings
 - To control the water height
- Smart building
 - House automation
 - Air-conditioning system
- Urban Wireless Sensor Networks
 - Smart metering [EDF, Coronis]
 - Green Cities [senscity]
 - Recycling containers
 - Smart Lights
 - Pollution

- Distributed algorithms
 - · Minimizing the overhead
 - Exchanging data only with neighbors
 - Limiting the energy consumption
 - To cope with transmissions errors
 - Self-stabilization properties
 - Robustness, reliability
- Protocol's design
 - MAC layer: how to distribute the bandwidth
 - Network layer: how to forward the traffic
 - Transport layer: how to offer reliability, etc.
- Models / simulations
 - Radio propagation (high level)
 - Discrete event simulation
- What we don't do
 - OS design
 - Hardware design

Example


- On-going collaboration with IPHC
 - High-Tech Turtles
- Current research challenges for us
 - Transport protocol: how to cope with transmissions errors?
 - Retransmissions, redundancy, etc
 - MAC layer
 - A huge volume of data to transfer
 - Several gigabytes in at most 20 minutes
 - Routing
 - One sink
 - Several fixed base stations forward the traffic to the sink
 - Reliability
 - Distribute the data to improve the robustness
 - The data of a lost sensor is even retrievable


Senslab testbed

256 sensor nodes in Strasbourg

- Same in Lille, Rennes, Grenoble
- \Rightarrow 1024 sensor nodes, fully open
- Testing our communication protocols
 - Against realistic conditions (radio range, sensing sensitivity, etc.)
 - In a highly dense network (8 nodes/m)

Senslab in Strasbourg

Senslab research challenges

Simulation versus experiments

- Radio models are simplistic
 - Radio propagation
 - Reliability
- Experiment in real life
- Rapid prototyping
 - To test before the deployment
- Open platform
 - For the research community
 - "A la grid5000"
 - You will soon be able to come and test